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Some recent numerical and theoretical studies indicate that it is possible to ac-
curately simulate the macroscopic motion of a particle in a heat bath, comprising
coupled oscillators, without accurately resolving the fast frequencies in the heat bath
itself. Here we study this issue further by performing numerical experiments on a
wide variety of mechanical heat bath models, all generalizations of the Ford–Kac
oscillator model. The results indicate that the nature of the particle-bath damping
in the macroscopic limit crucially affects the ability of underresolved simulations
to correctly predict macroscopic behaviour. In particular, problems for which the
damping is local in time pose more severe problems for approximation. The root
cause is that local damping typically arises from the degeneration of a memory
kernel to a delta singularity in the macroscopic limit. The approximation of such
singularities is a more delicate issue than the approximation of smoother memory
kernels. c© 2001 Academic Press
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stiff oscillatory systems; symplectic integration.

1. INTRODUCTION

There are many problems in which an initial value problem involving a large number of
variables may be partitioned into the form

dx

dt
= a(x, y), x(0) = x0,

(1.1)
dy

dt
= b(x, y), y(0) = y0,

where only the variablex is of intrinsic interest;y is of interest only in as much as its
evolution affectsx. If x ∈ Rd andy ∈ RD with D À d, it is desirable to find economical

1 Supported by JCL VA36/98 and DGICYT PB95-705.
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integration schemes which expend only minimal effort to calculate accurately the influence
of y on x without resolving all the details ofy. It is not possible to study such economical
schemes in a completely general way, but progress can be made if further structure is
assumed on the problem.

The structure which we choose to work with occurs when the variabley represents a
generalized heat bath and the variables(x0, y0) are distributed according to a measure whose
parameters encapsulate known properties of the bath. For these and other related problems,
one approach developed by Chorinet al. [2, 3] is to find an equation forX(t) = Ex(t)
where expectation is with respect to a measureν on(x0, y0). This reduces the dimension of
the system fromD + d to d, and hence reduces the complexity of an integration scheme.
The methodology has been used with some success, although theoretical justification is in
its early stages; study of some simple heat bath models, like those studied here, appears to
provide further theoretical understanding [9] as does the work of Hald [7].

The approach we study here is different. The full system (1.1)is integrated but a time-step
is chosen which is large relative to time-scales in the heat bath represented byy—formally
y will be computed inaccurately but it may still be possible to compute its effect onx
satisfactorily. We reemphasize that the motivation for such integration schemes is to reduce
computational cost by choosing a time-step which is as large as possible, given the objective
of computingx accurately.The main goal of this work is to study phenomena associated with
underresolved simulation; we are not advocating specific methods. Hence our numerical
simulations are, for the most part, performed within a single parametrized family of first-
order methods; the family includes the symplectic Euler method. In Section 6 we illustrate
the implications of our study for commonly used methods such as velocity Verlet and
multiple time-scale methods.

To address the accuracy questions forx, the general framework we study is Hamiltonians
of the form

H = 1

2
|p|2+ V(|q|)+

N∑
j=1

{
1

2

|v j |2
mj
+ Fj (u j ,q)

}
. (1.2)

Herep,q, u j , v j ∈ Rn and| · | denotes the Euclidean norm onRn. The variables are paired
canonically asx = (p,q), y = {(v j , u j )}Nj=1. In [12] the case where

n = 1, mj = 1

j 2
, Fj (w, z) = 1

2
(w − z)2

is studied. In this case, forN large and a certain Gaussian measureν on the initial data
for {(v j , u j )}Nj=1,q is provably close to the solutionQ of a stochastic differential equation
(SDE) inR2. It is natural to ask whether numerical simulations can accurately predict this
largeN behaviour forq without accurately resolving all they variables. Since

ü j + j 2(u j − q) = 0,

the fastest natural frequency iny is O(N) and a candidate inaccurate (and economical)
simulation is one for whichN1t is fixed so thaty is not fully resolved; in any case, fixing
N1t is natural from the stability viewpoint for explicit schemes.2 Numerical experiments

2 A restriction onξ = N1t required for convergence may be viewed as a CFL-like condition, analogous to
those arising in approximation of PDEs; see [10].
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performed in the regime

N1t = ξ, 1t → 0, N →∞ (1.3)

show [12] that certain numerical methods accurately approximate the SDE limit forq while
others do not. Those methods which fail to capture the limit correctly appear to compute a
different limit satisfying a modified SDE. Analysis which goes some way toward justifying
the experiments in [12] may be found in [1].

A natural criticism of the work in [1, 12] is that the model problems are too simple—if the
limit SDE is actually known explicitly then there is no need to solve the large Hamiltonian
system. The purpose of this paper is to show that results similar to those in [12] may
be observed in more complex situations where a limiting stochastic process forq is not
necessarily known to exist, or does not have the simple form of an SDE. To this end, we
study numerical methods for (1.1) under (1.3) in the four cases

n = 1, mj = 1

j 2
, Fj (w, z)= (w − z)4

4
; (1.4)

n = 3, mj = 1

j 2
, Fj (w, z)= |w − z|2

2
; (1.5)

n = 1, mj = 1

j 2
, Fj (w, z)= kj

(w − z)2

2
, (1.6)

wherekj is a random variable chosen so that the natural frequencies of the springs are
uniform random variables in the interval [0, N]; and

n = 1, mj = 1, Fj (w, z) = 1

2
j 2w2− w f (z). (1.7)

We present the results of numerical experiments for (1.4), (1.5), (1.6), and (1.7) in
Sections 2, 3, 4, and 5, respectively. The results show that the observations made in [12]
and [1] do carry over to more complex problems.

The first-order form of equations derived from (1.2), and which we want to integrate, is

ṗ = −V ′(|q|) q

|q| −
N∑

j=1

∂Fj

∂q
(u j ,q),

q̇ = p,
(1.8)

v̇ j = −∂Fj

∂u j
(u j ,q),

u̇ j = v j

mj
.

Here, and in the remainder of the paper,∂Fj

∂u j
denotes the gradient ofFj with respect tou j

and ∂Fj

∂q denotes the gradient ofFj with respect toq. Formallyu j (t) can be written, abusing
notation, as

u j (t) = H j (t) := H j ({q(s)}0≤s≤t , u j (0), v j (0))
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and so we obtain the history-dependent equations

q̈ + V ′(|q|) q

|q| +
N∑

j=1

∂Fj

∂q
(H j ,q) = 0. (1.9)

In the absence of the third term, we have a simple mechanical system describing frictionless
motion in a potentialV . The third term represents coupling to the heat bath. By choosing
u j (0), v j (0) at random,F j is rendered random and so we have a random history-dependent
functional equation forq. We refer to the behaviour of this equation forN →∞ as the
macroscopic limit. Our objective is to accurately reproduce solutions of (1.9) in the macro-
scopic limit, by solving the system (1.8) numerically, but without necessarily resolvingu j

andv j accurately. As we shall see, the extent to which this is possible depends heavily on
the nature of the particle–bath coupling in the limitN →∞.

For simplicity we detail here the three numerical methods ESM, ENSM1, and ENSM2,
which are a principal object of study throughout the paper. The symplectic Euler method,
which is an explicit symplectic method and is denoted by ESM, is defined by

pn+1 = pn −1tV ′(|qn|) qn

|qn| −1t
N∑

j=1

∂Fj

∂q

(
Un

j ,q
n
)
,

qn+1 = qn +1tpn+1,
(1.10)

Vn+1
j = Vn

j −1t
∂Fj

∂u j

(
Un

j ,q
n
)
,

Un+1
j = Un

j +1t
Vn+1

j

mj
.

We will also consider the explicit nonsymplectic methods

pn+1 = pn −1tV ′(|qn|) qn

|qn| −1t
N∑

j=1

∂Fj

∂q

(
Un

j ,q
n
)
,

qn+1 = qn +1tpn,
(1.11)

Vn+1
j = Vn

j −1t
∂Fj

∂u j

(
Un

j ,q
n
)
,

Un+1
j = Un

j +1t
Vn+1

j

mj
,

denoted here by ENSM1, and

pn+1 = pn −1tV ′(|qn|) qn

|qn| −1t
N∑

j=1

∂Fj

∂q

(
Un+1

j ,qn
)
,

qn+1 = qn +1tpn+1,
(1.12)

Vn+1
j = Vn

j −1t
∂Fj

∂u j

(
Un

j ,q
n
)
,

Un+1
j = Un

j +
1t

mj
Vn+1

j ,

denoted here by ENSM2.
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All three of these methods are particular cases of the general scheme

pn+1 = pn −1tV ′(|qn|) qn

|qn| −1t
N∑

j=1

∂Fj

∂q

(
Un+θ

j ,qn+φ),
qn+1 = qn +1tpn+σ1,

(1.13)
Vn+1

j = Vn
j −1t

∂Fj

∂u j

(
Un+1−α

j ,qn+1−α),
Un+1

j = Un
j +

1t

mj

(
Vn

j − α1t
∂Fj

∂u j

(
Un

j ,q
n
))
.

We emphasize that we are not advocating use of this general scheme; it is only of practical
interest in the ESM case. However, our results may be of interest since they indicate the
issues that arise, and the caution that must be exercised, when integrating stiff oscillatory
systems in the underresolved limit. In Section 6 we discuss related issues for methods
commonly used in the molecular dynamics literature, such as velocity Verlet and multiple
time-scale methods.

The parametersα, θ, φ, andσ1 have the following values for the three methods detailed
above:

• ESM: α = 1, θ = 0, φ = 0, σ1 = 1;
• ENSM1: α = 1, θ = 0, φ = 0, σ1 = 0;
• ENSM2: α = 1, θ = 1, φ = 0, σ1 = 1.

We note that none of the methods in (1.13) are symmetric (i.e., time-reversible). Moreover,
among them, only ESM and the one corresponding toα = 0, θ = 1, φ = 1, σ1 = 0, are
symplectic. All the others are not. (This can be proved in a straightforward way from the
definitions of symmetry and symplecticity). Our numerical studies in this paper, and some
analysis in [12], indicate that the conditions

α + θ = 1, θ = φ, (1.14)

are both necessary and sufficient for accurate resolution of(p,q) in underresolved
simulations of certain heat bath models, on finite time intervals. Both ESM and ENSM1
satisfy (1.14) and thus neither symmetry nor symplecticity appears necessary for accurate
resolution of the macroscopic variables(p,q).3

Although our purpose in this paper is to analyse and understand certain phenomena
associated with underresolved integration of heat baths, and not to propose the best methods
to do so, in Section 6 we extend our study of the integrators (1.13) to others widely used
in molecular dynamics problems, such as velocity Verlet or multiple time-scale integrators
[13, 14]. These methods are symplectic and symmetric and all perform well in terms of
reproducing the macroscopic limit. However, we show that in terms of error per unit cost,
with error measured in the macroscopic variables only, the multiple time-scale methods are
not competitive.

The overview of this paper is as follows: we have conducted numerical experiments
which investigate the numerical simulation of mechanical heat baths in the form (1.8);
these heatbaths generalize the Ford–Kac model described in [4, 15]. The methods are applied

3 It is likely that this conclusion might change radically for long-time simulations, but these are not the object
of study in this paper.
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under a CFL-like condition (1.3) which precludes accurate resolution of fast scales. The
question of interest is whether slowly varying quantities, governed by (1.9), are accurately
represented. Our aim is to further the analysis and experiments conducted in [1] and [12]
by studying a wider variety of problems.

Heuristically the effect of the heat bath coupling in (1.9) for largeN may be broken into
two components—a damping term representing loss of energy from the particle of interest
q to the heat bath, and a stochastic force, representing gain of energy toq from the bath,
with stochasticity introduced through the initial data. The numerical results we give seem
to indicate that, if the heat bath coupling gives rise tolocal (in time) damping, then the
observations of [1, 12] extend to more complex situations (see Sections 2, 3, and 4). That
is, certain methods, such as ESM and ENSM1, compute the correct macroscopic limit for
q, while others, such as ENSM2, fail to do so. If, however, the damping isnonlocal in
time, as in the Habib–Kandrup model of Section 5, then this distinction between methods
disappears and all of the methods studied appear to compute the correct macroscopic limit.

2. NONLINEAR SPRING COUPLING

Here we consider (1.2) under (1.4) which yields the equations

q̈ + V ′(q) =
N∑

j=1

(u j − q)3,

(2.1)
ü j + j 2(u j − q)3 = 0.

We considerV(z) = 1
4(1− z2)2 and initial data

q(0) = 1.5, q̇(0) = 0, u j (0) = α j , u̇ j (0) = 0, (2.2)

whereα j are chosen i.i.d. from a random variable with density proportional toe−(x
4/4).

Note that this is the macrocanonical invariant density foru j if q ≡ 0, that is if the heat
bath is uncoupled; it is hence a natural choice for initial data. No explicit stochastic process
characterizingq for large N is known here. However the solutions appear to approach a
limit as N →∞ and accurate solutions forq and p = q̇ with N = 32, 000 andN1t =
10−3 (well-resolved) are shown in Fig. 1. (TakingN = 64,000 andN1t = 0.5× 10−3

gives essentially the same result, substantiating our claim that there is a macroscopic limit

FIG. 1. Exact position and velocity of the distinguished particle in the problem with nonlinear spring coupling.
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FIG. 2. L2-error curves for the position and velocity of the distinguished particle when integrating with ESM.

N →∞.) Hereafter we refer to this as the “exact” solution and denote it byQ, tacitly
assuming that it represents the solution of some limiting stochastic problem found from
(1.9) in the macroscopic limit. We now approximate (2.1) by the three methods (1.10),
(1.11), and (1.12) under (1.3) withξ = 0.1. Figures 2 and 3 show that the methods ESM
and ENSM1 approximate the “exact” solution forq̇ with increasing accuracy asm increases,
whereN = 1000× 2m; similar convergence is observed for the positionq, although the
errors are smaller. (Notice that we are measuring the error in theL2-norm, so that this error
increases with time by definition.) Similar results are observed for theL∞ error in physically
interesting quantities such as position and/or velocity auto-correlations: the methods ESM
and ENSM1 converge. See Section 6.

For all our numerical experiments we perform best fits to the data to estimate rates of
convergence; here, and in all other cases, these are done for single realizations with respect
to the probability measure on the data. A least squares fit of the log–log plot ofL2—the
errors for the considered initial data—shows that the rate of convergence for these errors
is (1t)e, wheree= 1.1147 for ESM andq; e= 1.0997 for ENSM1 andq; e= 0.3659
for ESM andq̇; and e= 0.3752 for ENSM1 andq̇. However, for the ENSM2 no such
convergence is observed–Fig. 4 compares the positionQ as calculated exactly and under
(1.3) with N = 8000, ξ = 0.1.4

The observations about the relative merits of these schemes correspond exactly to those
made in [12] for which the spring coupling is linear: in that case the limiting exact solution
is known to be the solution of an explicit SDE, found from (1.9) asN →∞, and only ESM
and ENSM1 compute this limit correctly under (1.3). Our experiments show that insight
obtained for the linear spring coupling sheds light on the efficacy of numerical methods
with a stronger nonlinear coupling for which an explicit macroscopic limit is not known.

3. LINEAR SPRINGS

Here we consider (1.2) under (1.5) giving

q̈ + V ′(|q|) q

|q| =
N∑

j=1

(u j − q), q(0) = q0, q̇(0) = p0

(3.1)
ü j + j 2(u j − q) = 0, u j (0) = α j , u̇ j (0) = 0.

4 It is worth mentioning at this point that the total energy of the system is not a useful diagnostic in this case;
the relative energy errors for ESM and ENSM2 are indistinguishable—see Section 6.
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FIG. 3. L2-error curves for the position and velocity of the distinguished particle when integrating with
ENSM1.

Again we takeV(z) = 1
4(1− z2)2 and the initial data (2.2) where nowq0, p0, α j ∈ R3 and

each componentα j is distributed according to a density proportional toe−(x
4/4). Calculation

as in [12] shows thatu j may be eliminated to give

q̈ + V ′(|q|) q

|q| +
∫ t

0
KN(t − s)q̇(s)ds= −KN(t)q(0)+ ZN(t),

q(0) = q0, q̇(0) = p0.

Here

KN(t) =
N∑

j=1

cos( j t )

and

ZN(t) =
N∑

j=1

α j cos( j t ).

Because theα j are not Gaussian the limiting behaviour ofZN(t) for largeN is no longer a
Gaussian white noise process as it is in [12]. However, using results in [8] it may be proved

FIG. 4. Position of the distinguished particle when integrated accurately (“exact”) and when integrated with
ENSM2 (N = 8000,N1t = 0 : 1).
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that, almost surely, ∫ t

0
ZN(s) ds→ W(t)

whereW(t) is continuous. Note also thatKN(t) has a delta-like singularity for largeN,
(KN(t) ≈ πδ(t)− 1

2) rendering the damping term∫ t

0
KN(t − s)q̇(s) ds

local in time.
We believe that analysis similar to that in [12] would enable proof that, for largeN,q is

close toQ, solving the (formal) SDE

Q̈+ π
2

Q̇+ V ′(|Q|) Q

|Q| −
1

2
Q = Ẇ,

(3.2)
Q(0) = q0, Q̇(0) = p0− π

2
q0.

A rigorous interpretation of this equation would require formulation as an integral equation.
Figure 5 shows the Euclidean norm of the “exact” solution of (3.1) forN1t = 10−3 and
N = 32, 000, takingq0 = (1.5, 1.5, 1.5)T and p0 = (0, 0, 0)T . Thus we believe that this
will be a good approximation to a solutionQ of (3.2) with a particular choice of noise
related to the specific choice ofα j .

Based on the analogy with the work in [12] we conjecture that the numerical method
(1.13), if integrated in the regime (1.3), will approximate not necessarily (3.2), but rather
the possibly shifted limit

Q̈+
{
π

2
+ ξ(φ − θ)

}
Q̇+ V ′(|Q|) Q

|Q| −
1

2
Q = Ẇ,

(3.3)
Q(0) = q0, Q̇(0) = p0− q0

{
π

2
+ ξ(1− α − θ)

}
.

Note thatθ, α, andφ are parameters of the method (1.13). Thus we are conjecturing that the
computed macroscopic behaviour will depend upon the method used, a highly unsatisfactory
situation. This conjecture is borne out in experiments. Figure 6 shows the errors inq̇

FIG. 5. Euclidean norm of the “exact” position and velocity of the distinguished particle in the 3D–linear
problem.
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FIG. 6. L2-error curves for the velocity of the distinghished particle when integrating with ESM and ENSM1,
respectively.

(compared with the “exact” solution) under (1.3) withξ = 1 and N = 1000× 2m,m=
0, 1, 2, 3 for both ESM and ENSM1. Sinceθ = φ andθ + α = 1 for both these methods,
Eqs. (3.2) and (3.3) are identical and we see convergence to the correct macroscopic limit,
namely the solution of (3.2). Here the exponents in the rates of convergence can be calculated
to be 0.3733 for ESM and 0.3786 for ENSM1 measured inq̇. The rates of convergence in
the positionq for both methods are 1.0346 and 1.0663, respectively. Figure 7 compares the
euclidean norm oḟq for the “exact” solution and as computed by the ENSM2, for which
θ − φ = 1, θ + α = 2. As conjectured the correct limit is not calculated. However, if the
error is calculated based on a comparison with solution of Eq. (3.3), then convergence is
observed—see Fig. 8, againN = 1000× 2m,m= 0, 1, 2, 3, andξ = 1 in (1.3).

Thus, once again, we have a correspondence with our observations in [1, 12]; note that
here our analysis is not as complete as in [12] because the noise is not Gaussian white. It is
hence interesting that insight gained from [12] applies in this more general situation.

4. 1D RANDOM FREQUENCIES PROBLEM

In this section, we consider problem (1.2) under (1.6). The precise choice of the parameters
is made as follows. Definekj > 0 byω2

j = j 2kj and chooseω j to be thej th order statistic

FIG. 7. Euclidean norm of the velocity of the distinghished particle when integrating accurately (“exact”)
and when integrating with ENSM2 (N = 8000,N1t = 1).
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FIG. 8. L2-error curves for the velocity of the distinguished particle when integrating with ENSM2 and taking
as exact solution (3.3).

in a random sample ofM numbers fromU [0,M ].5 The integerM is chosen larger than or
equal to anyN used in subsequent numerical experiments. This defines the{ω j } and hence
the{kj }. This set of{ω j , kj } is chosen at random once and then the same set is used in all
subsequent numerical experiments.

We have consideredM = 32,000 and have used the firstN of the{ω j , kj } thus generated
as the frequencies of the linear springs in the following problem, which is (1.8) under
(1.6):

q̈ = −V ′(q)+
N∑

j=1

kj (u j − q),

ü j = −ω2
j (u j − q), j = 1, . . . , N, (4.1)

q(0) = 1.5, q̇(0) = 0, u j (0) = α j , u̇ j (0) = 0.

The {α j }Nj=1 are chosen as i.i.d. samples from a Gaussian distribution with mean 0 and
variance 1. Eliminatingu j in (1.8) we obtain

q̈ + V ′(q)+
∫ t

0
KN(t − s)q̇(s)ds= −KN(t)q(0)+ ZN(t), (4.2)

where

KN(t) :=
N∑

j=1

kj cos(ω j t)

and

ZN(t) :=
N∑

j=1

kj [α j cos(ω j t)].

5 The notationU [a, b] denotes the uniform distribution on [a, b]. The order statistics are ordered with smallest
first, largest last.
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FIG. 9. L2-error curves for the position and velocity of the distinguished particle when integrating the linear
springs problem with random frequencies with ESM.

This is a specific instance of (1.9). Although we have not proved it, we believe that this
equation gives rise to a limiting SDE governing the motion ofq for N →∞ and we proceed
on the assumption that this is so.

We have approximated this macroscopic limit of the problem by solving (4.1) with
N = 32,000 andN ×1t = 10−3—the “exact” solution. We have then compared this with
the numerical solutions obtained from (1.10), (1.11), and (1.12) under (1.3) withξ = 1,
taking N = 1,000× 2m with m= 0, 1, 2, 3.

The results are very similar to those obtained in the previous sections.There is convergence
to the “exact” solution with methods ESM and ENSM1, but there is no convergence to that
solution for ENSM2. Figures 9, 10 and 11 demonstrate this. Figure 12 shows the difference
between the numerical solution and the “exact” solution for the last method. Graphically,
it is clear that there is a jump in the initial condition for the velocity and that this is badly
estimated by the method; this situation is identical to what happens in the problems of
Sections 2 and 3. Furthermore, the rate of convergence of the form(1t)e for ESM and
ENSM1 in q is similar to that observed in the previous sections. Precisely, a log–log fit
of the errors gave slopee for the errors inq as 1.0282 and 1.0397 for ESM and ENSM1,
respectively. The slopes for the errors inq̇ are 0.2706 and 0.2717 for the same methods—
slightly lower than the values obtained in previous sections.

Because of the properties of order statistics from large samples, thekj are asymptotically
1 for large j and henceKN again has embedded within it a delta-like singularity for large
N. Thus we see that, as in the previous section, local damping appears in the limit problem,

FIG. 10. L2-error curves for the position and velocity of the distinguished particle when integrating the linear
springs problem with random frequencies with ENSM1.
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FIG. 11. L2-error curves for the position and velocity of the distinguished particle when integrating the linear
springs problem with random frequencies with ENSM2.

giving rise to memory kernels whose approximation is delicate. In the next section we
consider a problem for which the damping is not local in time.

5. HABIB AND KANDRUP PROBLEM

In this section we consider (1.2) under (1.7), a form of heat bath introduced by Habib
and Kandrup [6] with applications in, for example, cosmology. In this case, Hamilton’s
equations give, with initial conditions (2.2),

q̈ + V ′(q) = f ′(q)
N∑

j=1

u j , q(0) = q0, q̇(0) = p0,

(5.1)
ü j + j 2u j = f (q), u j (0) = α j , u̇ j (0) = 0.

Solving foruj in terms ofq gives

u j (t) = α j cos( j t )+
∫ t

0

sin( j (t − s))

j
f (q(s)) ds.

Integrating by parts, defining

KN(t) =
N∑

j=1

cos( j t )

j 2

FIG. 12. Position and velocity of the distinguished particle in the linear springs problem with random fre-
quencies when integrated accurately and when integrated with ENSM2.
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and

ZN(t) =
N∑

j=1

{
α j − f (q(0))

j 2

}
cos( j t ),

we obtain

q̈ + V ′(q) = f ′(q)

{
ZN(t)+ KN(0) f (q(t))−

∫ t

0
KN(t − s) f ′(q(s))q̇(s) ds

}
.

Now, by Fourier techniques, the following series converges pointwise and inL2((0, π)):

∞∑
j=1

cos( j t )

j 2
= 1

4
t2− π

2
t + π

2

6
:= K∞(t).

If we chooseα j = f (q(0))
j 2 + η j whereη j isN (0, 1)and i.i.d., then almost surely

∫ t
0 ZN(s)ds

converges uniformly in (0, π ) to a Brownian bridgeW(t). Thus we anticipate that a candi-
date limit problem forQ is the stochastic integro-differential equation, written formally as

Q̈+ f ′(Q)
∫ t

0
K∞(t − s) f ′(Q(s))Q̇(s) ds+ V ′(Q)− π

2

6
f ′(Q) f (Q) = f ′(Q)Ẇ,

Q(0) = q0, Q̇(0) = p0.

Of course, any rigorous interpretation will require a stochastic integral of some form,
presumably of Stratonovich type in view of the fact that our approximation to Brownian
motion isC1.

For our numerical experiments, we have considered the particular casef (z) = z2/2.
Note that, in contrast with the problems in [12] and in Sections 3 and 4, for this problem
there is no jump induced in the initial velocity for the limit problem and the damping is
nonlocal in time.

Once again the “exact” solution of (5.1) is found by integrating withN large (16,000)
andN1t small(N1t = 10−3). Numerical approximations are calculated under (1.3) with
ξ = 1 andN = 1,000× 2m,m= 0, 1, 2, 3. In this caseall threemethods (1.10), (1.11),
and (1.12) appear to converge, although for (1.12) the errors in positionq are significantly
larger than for (1.10) and (1.11); see Figs. 13, 14, and 15. Convergence is also observed

FIG. 13. L2-error curves for the position and velocity of the distinguished particle when integrating with
ESM.
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FIG. 14. L2-error curves for the position and velocity of the distinguished particle when integrating with
ENSM1.

in the q̇ variable but in this case (1.12) is as accurate as (1.10) and (1.11). The exponents
for the rates of convergence are now 1.0419 for ESM andq, 0.9900 for ENSM1 andq,
0.3266 for ENSM2 andq, 0.3532 for ESM anḋq, 0.3532 for ENSM1 anḋq, and 0.3823
for ENSM2 andq̇.

It is interesting that for this kind of problem, where the limit does not have a jump in the
initial condition and where the damping is nonlocal in time, there is no distinction between
the three methods (1.10), (1.11), and (1.12) in qualitative terms—all appear to accurately
reproduce the macroscopic limit solution when operating in the stiff regime (1.3). The same
phenomenon (convergence to the “exact” solution for all three methods) is observed for
a variety of other problems in the same class and, in particular, for problems which lead
to additive noise and not multiplicative noise. Thus the observations concerning the effect
of the smooth memory kernel appear quite robust in relation to changes in the problem
specification.

6. RELATION TO MOLECULAR DYNAMICS LITERATURE

In this paper we have studied a class of heat bath models and, in particular, the question
of how underresolved simulations of the heat bath affect accuracy of predictions concerning
the distinguished particle. The first point to emphasize is that this is a very special class
of models and that our investigations can therefore only be regarded as a first step; but
we believe that the issue of underresolution, and its relation to prediction of macroscopic
quantities, is an important one and that this first step is worth taking. The second point to

FIG. 15. L2-error curves for the position and velocity of the distinguished particle when integrating with
ENSM2.
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FIG. 16. L2-error curves for the position and velocity of the distinguished particle when integrating problem
(1.4) with velocity Verlet.

emphasize is that we have confined ourselves to a simple parametrized family of methods,
not those used in the molecular dynamics (MD) literature. The third point is that our
measures of accuracy do not encompass frequently used diagnostics such as total energy
error and the study of physical quantities such as autocorrelation. The final point is that
resonances, an issue of some importance in the MD literature, have not been discussed. In
this section we address the second, third, and final points in some detail.

6.1. Other Methods

The velocity Verlet method (VV) is a symmetric and symplectic second-order method
widely used in MD simulations. It may be viewed as a pre- and postprocessed version of
the symplectic Euler method ESM studied in previous sections, and it is thus natural to ask
whether it inherits the good approximation properties of ESM for the distinguished particle.
Figure 16 shows errors for the distinguished particle, when integrating (1.4), withξ = 0.1,
using the VV method

P = pn + 1t

2

[
−V ′(|qn|)+

N∑
j=1

∂Fj

∂q

(
Un

j ,q
n
)]
,

Qj = Vn
j −

1t

2

∂Fj

∂q

(
Un

j ,q
n
)
,

qn+1 = qn +1t P,

Un+1
j = Un

j +1t Q j ,

pn+1 = P + 1t

2

[
−V ′(|qn+1|)+

N∑
j=1

∂Fj

∂q

(
Un+1

j ,qn+1
)]
,

Vn+1
j = Qj − 1t

2

∂Fj

∂q

(
Un+1

j ,qn+1
)
.

Figure 16 should be compared with Fig. 2 which shows nearly identical behaviour for the
ESM. Indeed fits to the slopes of the error for VV and ESM differ by only (approximately)
0.5% for the position and 2% for the velocity.

This experiment is interesting because it shows that, although VV is formally second-
order accurate and ESM only first-order accurate, when predicting the motion of the
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FIG. 17. L2-error for the position and velocity of the distinguished particle after time 1 against computational
cost when integrating problem (1.4) with velocity Verlet (*,N = 1000, 2000, 4000, 8000), MTS1 (o,N = 1000,
2000, 4000), and MTS2 (x,N = 1000, 2000).

distinguished particle in an underresolved heat bath, the methods are equally accurate.
There are two reasons for this: (i) the distinguished particle has highly irregular accelera-
tion (the limit problem is likely to be an SDE for which the acceleration does not exist as
a bounded function) and this limits accuracy; (ii) the truncation for the limit problem to a
finite N is a dominant error.

We have also studied multiple time-scale methods [5, 13, 14]. These are widely used in
the MD literature, in particular in the reversible versions described in [13, 14]. The first,
MTS1, is based on ideas in [13]. It is constructed as follows: we consider as fast and slow
forces the respective terms

Ff =
N∑

j=N/2+1

∂Fj

∂q
(u j ,q), Fs =

N/2∑
j=1

∂Fj

∂q
(u j ,q)− V ′(|qn|) qn

|qn| .

The method is based on velocity Verlet in the following way. A step1t = ξ/N of the
integration consists of

• advancing the velocities1t/2 units of time with the explicit symplectic Euler method
(ESM) taking into account only the slow forces;
• advancing the velocities and positions1t units of time from the previous values, using

N steps of stepsizeδt = 1t/N of the velocity Verlet method and taking into account only
the fast forces;
• advancing the velocities1t/2 units of time from the previous values, using explicit

Euler and taking into account only the slow forces.

FIG. 18. Relative energy error in the whole system when integrating with ESM andN = 8000, N1t = 0.1.
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FIG. 19. Relative energy error in the whole system when integrating with velocity verlet andN = 8000,
N1t = 0.1.

Note that with this method the high-oscillatory springs are integrated much more accurately
than they are in the methods applied in previous sections and than they are in VV. An
important question is whether the cost of this greater accuracy is justified.

The second multiple time-scale method, MTS2, is based on ideas in [14] and is constructed
as follows. It consists of an embedded factorization of the propagator of the method, similar
to the one given previously, but more complicated, integrating several groups of different
frequencies with different time-steps. More precisely, we have considered the following:

• stepsize dt1= 1031t/N for the frequencies 1 toN/500;
• stepsize dt2= dt1/10 for the frequenciesN/500+ 1 to N/50;
• stepsize dt3= dt2/10 for the frequenciesN/50+ 1 to N/5;
• stepsize dt4= dt3/10 for the frequenciesN/5+ 1 to N.

For MTS1, the number of times the function∂Fj

∂q
must be evaluated to integrate to time 1

is approximately 0.5(1+ N)N2/ξ , compared withN2/ξ required for single velocity Verlet
with N1t = ξ . For MTS2, the number of evaluations is approximately

N3

ξ

[
4

5
+ 9

500
+ 9

50,000
+ 1

5× 105

]
≈ 4N3

5ξ
.

However, both the MTS methods are, of course, considerably more accurate when con-
sidered as approximations to the whole system. It is hence of interest to compare accuracy
per unit cost for the MTS methods and VV. We do this, focusing interest only on the er-
ror in computing the distinguished particle. What we find is that the cost per unit error of

FIG. 20. Relative energy error for the whole system when integrating with ENSM2 andN = 8000, N1t =
0.1.
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FIG. 21. Relative energy error for the whole system when integrating Problem (1.4) with MTS1 (left) and
MTS2 (right),N = 1000 andN1t = 0.1.

the VV method is considerably smaller than for both our implementations of the MTS
method. Figure 17, which is based on experiments with problem (1.4), illustrates this phe-
nomenon. Of course it ispossiblethat, by optimizing the splittings in the MTS algorithms,
a competitive MTS method could be found. But the experiments suggest quite strongly that,
if only errors in macroscopic quantities are of interest, then some care needs to be taken
in determining how to evaluate the relative merits of various schemes; for our particular
model problems the straightforward VV implementation appears to be superior to MTS.

6.2. Other Error Indicators

(i) Total energy. The total energy is a commonly used diagnostic in the MD literature.
Figures 18, 19, 20, and 21 show the relative energy error for simulations of (1.4); all
are performed in the regimeN = 8000 andN1t = 0.1 with the exception of the MTS
methods which are integrated atN = 1000. Except for MTS2, increasingN does not cause
the relative energy error to go to zero; it remains approximately the same size. The relative
accuracy of the methods, considered as approximations for the whole systems and not just
the distinguished particle, is manifest in these figures and shows that the total energy error is
a useful diagnostic in that sense. Note, however, that the ENSM2 method does not correctly
predict the distinguished particle motion, but this fact isnotmanifest in the energy error—
Figs. 18 and 20 are quantitatively very similar. Note also that while the VV has a much
smaller energy error than the ESM, at the particle level this accuracy advantage disappears.
In summary, energy error is quite misleading when evaluating the accuracy and efficiency
of underresolved methods for macroscopic quantities.

FIG. 22. Autocorrelation error in position and velocity when integrating problem (1.4) with ESM andN1t =
0.1.
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FIG. 23. Autocorrelation error in position and velocity when integrating problem (1.4) with ENSM2 and
N1t = 0.1.

(ii) Autocorrelation. In earlier sections we have chosen to monitor the particle position
and velocity errors in theL2 norm in time because that norm is appropriate for the analysis
which has been performed in some cases [1, 12]. Note, however, that the definition of this
norm means that all errors are monotone increasing; this does not imply that pointwise
velocity errors are increasing. To emphasize this fact we look atL∞ errors in the particle
position and velocity autocorrelation functions

Cq(t) = 1

t

∫ t

0
q(s)q(s+ t) ds, Cp(t) = 1

t

∫ t

0
p(s)p(s+ t) ds,

for the ESM method and the ENSM2 method applied to problem (1.4). Figure 22 shows
convergence of these quantities for the ESM method, while Fig. 23 illustrates nonconver-
gence for the ENSM2 method. These graphs simply represent what we have seen already
in Section 3, here visualized in terms of physically meaningful quantities.

6.3. Resonances

Resonances impose significant limitations on explicit integrators in MD simulations [11]
and it is therefore of interest to understand their role in our context. We have seen no
evidence of resonance effects in our simulations. There are two likely explanations for this:
our time-step restriction (1.3) is sufficient to avoid them for the most part; even if they do
occur they are limited to infrequent effects which, in any case, occur in the high frequency
modes whose accuracy does not concern us directly.

In fact, we have calculated the frequency power spectrum for the position and velocity of
the distinguished particle corresponding to problem (1.4). We have considered the “exact”

FIG. 24. Frequency power spectrum for the position of the distinguished particle when integrating problem
(1.4) “exactly” and with VV,N = 8000 and various values ofN1t .
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FIG. 25. Frequency power spectrum for the velocity of the distinguished particle when integrating problem
(1.4) “exactly” and with VV,N = 8000 and various values ofN1t .

solution determined in Section 2, as well as the numerical approximation given by velocity
Verlet for several values ofN1t (just small enough to give stability). We have not seen
any evidence of resonant behaviour. In Figs. 24 and 25, we considerN = 8,000 and then
N1t = 0.1 and N1t = 2π/60. The power spectrum is calculated through fast Fourier
transform. For the “exact” solution and the first numerical approximation we apply it to
80,000 uniform values in time [0, 1]. For the second numerical approximation, we consider
the 76,394 values given in the same interval. Notice that we have normalized the frequency
to vary from 0 to 1 although we have just drawn half the spectrum because of the symmetry
due to the real input for the FFT. For the position, we have limited the power spectrum to
[0, 102], in order to provide a clear comparison with the “exact” case. We have fit the spectral
data to a function of the formC/ωα, getting in all casesC = 0.08075. . . , α = 1.8045. . ..
(The results for each integration differ only in the decimal places which are not shown.) As
for the velocity, we have limited the spectrum to [1, 104]. In Fig. 25, we can see that the
“exact” solution has a heavier weight in some of the frequencies than the approximations
calculated withN = 8,000. This is natural if we take into account that the “exact” solution
was calculated withN = 32,000 and therefore more frequencies arise there. (In fact, we are
interested in the limit whenN grows to infinity.) In any case, the numerical approximations
do not show any significant frequency which is not present in the “exact” solution. In
summary, we see no evidence of resonance.

7. CONCLUSIONS

The results in Sections 2, 3, and 4 are qualitatively different from those in Section 5. In
Section 5 all methods appear to reproduce the macroscopic limit; in the other sections only
certain methods reproduce the correct limit. It is our belief that the key difference which
gives rise to this observation is the nature of the memory kernelKN . In Sections 3 and 4
this kernel has embedded within it delta-like behaviour, forN À 1, leading to local-in-time
damping; in Section 5 the kernel is smooth asN →∞ and the damping is hence nonlocal in
time. (In Section 2 we cannot compute an explicit damping kernel, because of the nonlinear
nature of the coupling, but in the linear spring analogue of the problem, which is considered
in [12], the kernel again contains a delta-like singularity.)

Thus the approximation of Fourier representations of delta functions, by numerically
generated oscillators, appears key regarding the underresolved simulations of (1.8). Analysis
of this issue is pursued in detail in [1].
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Looking at the subject more broadly, the experiments in this paper indicate that it is
possible to accurately compute macroscopic quantities in mechanical heat baths without
detailed resolution of fast scales in the heat bath, and therefore without having to resort to
multiple time-scale methods. By considering a wide variety of problems we have consider-
ably extended the range of heat bath models which allow this conclusion to be drawn. This
in turn suggests that pursuing this question for other problems in the general form (1.1)
is a worthwhile endeavour. In particular, the study of Hamiltonian problems with a more
applied flavour, such as those arising in molecular dynamics, would be natural. Our studies
in Section 6 touch on some of the issues that arise in this context.
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